
1

Architecture des Ordinateurs
Partie III : Liens avec le système
d’exploitation
1. Modèles d’exécution

David Simplot
simplot@fil.univ-lille1.fr

D. SIMPLOT - Architecture des Ordinateurs 2

Objectifs

� Faire le lien entre le matériel et ce que vous
faîtes « au-dessus »
� Système d’exploitation
� Modèle d’exécution

• Langage natif
• Machine virtuelle

� Compilateurs
� Outils d’aide à la conception et de mise au point

D. SIMPLOT - Architecture des Ordinateurs 3

Au sommaire...

� Rôle d’un système d’exploitation
� Chaîne de compilation
� Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs 4

Rôle d’un Système d’Exploitation
(1/3)
� Système d’Exploitation = Operating System
� Présenter au programmes une abstraction du matériel

� Piloter un périphérique = très compliqué
• Pilote = Driver

� ⇒ le système d’exploitation propose une HAL
• Hardware Abstraction Layer
• Ex. fichiers, objets

� L’interface entre le système d’exploitation et les programmes
de l’utilisateur est constitué d’un ensemble d’« instructions
étendues » fournies par le système d’exploitation
� Appels système

D. SIMPLOT - Architecture des Ordinateurs 5

Rôle d’un Système d’Exploitation
(2/3)
� Gestion des processus

� Multi-tâches
• Préemptif, non préemptif

� Ordonnanceur de processus
� Partage des ressources
� Communications inter-processus

� Les entrées/sorties (Voir Partie IV)
� Interruptions, DMA
� « Bufferisation » des E/S

� Gestion de la mémoire (Voir Partie IV)
� Système de fichiers

D. SIMPLOT - Architecture des Ordinateurs 6

Rôle d’un Système d’Exploitation
(3/3)
� Chargement d’applications

� Passer de l’état « fichier exécutable » à l’état «
programme qui s’exécute » ☺

� Le fichier contient une suite d’octets correspondant au
programme en langage machine ainsi qu’aux données

• En plus, on a des informations sur le programme
– L’adresse de début du programme
– La mémoire nécessaire
– Les bibliothèques dynamiques utilisées
– …

� C’est le rôle du système d’exploitation d’effectuer le
chargement

• Copie du « code » en mémoire + liens + exécution

2

D. SIMPLOT - Architecture des Ordinateurs 7

Au sommaire...

� Rôle d’un système d’exploitation
� Chaîne de compilation
� Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs 8

Chaîne de Compilation (1/14)

� Programme écrit en langage de « haut niveau »
� Fortran, Pascal, Ada, Cobol, C, C++…

� Transformer le « programme source » en « fichier
exécutable », c’est le rôle de la compilation.

� On distingue deux phases :
� Compilation
� Edition de liens

D. SIMPLOT - Architecture des Ordinateurs 9

Chaîne de Compilation (2/14)

Environnement de développement

Environnement d’exécution

Editeur

Fichiers
source

Compilateur

Fichiers
« objet »

Editeur de liens

Fichier
Exécutable

Chargeur

Programme
ExécutableEnvironnement

de mise au point

D. SIMPLOT - Architecture des Ordinateurs 10

Chaîne de Compilation (3/14)
Niveaux de compatibilité

� On distingue plusieurs niveaux de compatibilité
Programme

source

Programme
exécutable

Système
d’exploitation

Compilateur
Editeur de liens

Matériel

Bibliothèques
statiques

Bibliothèques
dynamiques

API
(Application Programmatic
Interface)

ABI
(Application Binary Interface)

HAL
(Hardware Abstraction Layer)

D. SIMPLOT - Architecture des Ordinateurs 11

Chaîne de Compilation (4/14)
Niveaux de compatibilité (suite)

� Compatibilité source
� Respect de l’API proposée
� Repose généralement sur des normes

• Ex. ANSI, POSIX, X-OPEN
� Le portage d’un programme implique la recompilation des

sources
� Pb. de propriété industrielle

• Open Source

D. SIMPLOT - Architecture des Ordinateurs 12

Chaîne de Compilation (5/14)
Niveaux de compatibilité (suite)

� Compatibilité binaire niveau application
� Programme sous forme de « binaires »

• Programmes compilés dans un environnement déterminé sous
forme chargeable

• Plate-forme proposant l’interface ABI utilisée
� Pb. pour les nouvelles architecture :

• Coût de développement
• ⇒ compatibilité binaire ascendante des plate-formes (matériel

et logiciel)
� Compatibilité binaire :

• Architecture du processeur
• Convention d’adressage et de communication (OS)
• Interface avec l’OS et les bibliothèques (.so ou DLL)
• Conventions de représentation des données (taille, LE ou BE)

3

D. SIMPLOT - Architecture des Ordinateurs 13

Chaîne de Compilation (6/14)
Niveaux de compatibilité (suite)

� Compatibilité binaire niveau OS
� Portabilité des != OS sur != plateformes

• On travaille sur l’interface OS/matériel
• HAL = Hardware Abstraction Layer

D. SIMPLOT - Architecture des Ordinateurs 14

Chaîne de Compilation (7/14)
Exemple GNU

� Chaîne de compilation du projet GNU
� Le projet GNU a été lancé en 1984 afin de

développer un système d'exploitation
complet, semblable à Unix et qui soit un
logiciel libre: le système GNU. (« GNU » est
l'acronyme récursif the « GNU's Not Unix »;
on le prononce « gnou » avec un G audible)
Des variantes du système d'exploitation
GNU, basées sur le noyau « Linux », sont
utilisées largement à présent; bien que ces
systèmes soient communément appelés
par le terme « Linux », ils le seraient plus
exactement par « GNU/Linux ».

D. SIMPLOT - Architecture des Ordinateurs 15

Chaîne de Compilation (8/14)
Exemple GNU (suite)

source
Fichier

.c

compilateur assembleur édition de liens

fichier
préprocessé

.i

fichier
assembleur

.s

fichier
objet
.o

.i .o.s .a

pré-compilées
librairies

Exécu-
table

a.out

cc1cpp

préprocesseur

as ld

D. SIMPLOT - Architecture des Ordinateurs 16

Chaîne de Compilation (9/14)
Exemple GNU (suite)

� Programme C très très simple :
#define MAX 2

int main(void)
{

int a = MAX;

a = a + 2;

return 0;
}

D. SIMPLOT - Architecture des Ordinateurs 17

Chaîne de Compilation (10/14)
Exemple GNU (suite)

� Première étage : préprocesseur
3 "ex.c“
int main(void)
{

int a = 2;

a = a + 2;

return 0;
}

D. SIMPLOT - Architecture des Ordinateurs 18

Chaîne de Compilation (11/14)
Exemple GNU (suite)

� Deuxième étape : génération de l’assembleur
.file "ex.c"
.version "01.01"

gcc2_compiled.:
.text

.align 16
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl $2, -4(%ebp)
leal -4(%ebp), %eax

4

D. SIMPLOT - Architecture des Ordinateurs 19

Chaîne de Compilation (12/14)
Exemple GNU (suite)

addl $2, (%eax)
movl $0, %eax
movl %ebp, %esp
popl %ebp
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 2.96 20000731 (Linux-
Mandrake 8.0 2.96-0.48mdk)"

D. SIMPLOT - Architecture des Ordinateurs 20

Chaîne de Compilation (13/14)
Exemple GNU (suite)

� Troisième étape : génération du .o
� 000000: 7f 45 4c 46 01 01 01 00 127 069 076 070 001 001 001 000 .ELF....
� 000008: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000
� 000010: 01 00 03 00 01 00 00 00 001 000 003 000 001 000 000 000
� 000018: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000
� 000020: e8 00 00 00 00 00 00 00 232 000 000 000 000 000 000 000 è.......
� 000028: 34 00 00 00 00 00 28 00 052 000 000 000 000 000 040 000 4.....(.
� 000030: 09 00 06 00 00 00 00 00 009 000 006 000 000 000 000 000
� 000038: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000
� 000040: 55 89 e5 83 ec 04 c7 45 085 137 229 131 236 004 199 069 U.å.ì.ÇE
� 000048: fc 02 00 00 00 8d 45 fc 252 002 000 000 000 141 069 252 ü.....Eü
� 000050: 83 00 02 b8 00 00 00 00 131 000 002 184 000 000 000 000 ...¸....
� 000058: 89 ec 5d c3 08 00 00 00 137 236 093 195 008 000 000 000 .ì]Ã....
� 000060: 00 00 00 00 01 00 00 00 000 000 000 000 001 000 000 000
� 000068: 30 31 2e 30 31 00 00 00 048 049 046 048 049 000 000 000 01.01...
� 000070: 00 47 43 43 3a 20 28 47 000 071 067 067 058 032 040 071 .GCC: (G
� 000078: 4e 55 29 20 32 2e 39 36 078 085 041 032 050 046 057 054 NU) 2.96
� …

D. SIMPLOT - Architecture des Ordinateurs 21

Chaîne de Compilation (14/14)
Exemple GNU (suite)

� Génération de l’exécutable
� Prendre les fichiers .o
� Déterminer le point d’entrée du programme
� Faire les liens

• Edition de liens = Link

� On peut mettre des informations permettant de
débogguer le programme

D. SIMPLOT - Architecture des Ordinateurs 22

D. SIMPLOT - Architecture des Ordinateurs 23

Au sommaire...

� Rôle d’un système d’exploitation
� Chaîne de compilation
� Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs 24

Machines Virtuelles (1/4)

� Objectif =
� S’affranchir de la compabilité binaire !
� On ne compile plus pour une plate-forme physique donnée,

mais pour une Machine Virtuelle
� Langage Java

� Développé par Sun Microsystem
� S’inspire du C++ pour la syntaxe
� S’inspire de Smalltalk pour la philosophie
� Indépendance de la plate-forme matérielle
� JVM = Java Virtual Machine

Write once, run everywhere

5

D. SIMPLOT - Architecture des Ordinateurs 25

Machines Virtuelles (2/4)

� Chaîne de compilation et plate-forme d’exécution

D. SIMPLOT - Architecture des Ordinateurs 26

Machines Virtuelles (3/4)

� Utilisation de code natif
� JIT = Just-In-Time compiler

D. SIMPLOT - Architecture des Ordinateurs 27

Machines Virtuelles (4/4)

� Java n’est pas le seul langage avec machine
virtuelle :
� Smalltalk
� VisualBasic (génération de P-code)
� Langages interprétés en général

D. SIMPLOT - Architecture des Ordinateurs 28

Conclusion

� Reste à voir les techniques de génération de code

