Architecture des Ordinateurs
Partie III : Liens avec le systeme
d’exploitation

1. Modéles d’exécution

David Simplot
simplot@fil.univ-lille1.fr

Objectifs

Faire le lien entre le matériel et ce que vous
faites « au-dessus »
-+ Systeme d’exploitation
~ Modele d’exécution
« Langage natif
* Machine virtuelle
-+ Compilateurs
-+ Outils d’aide a la conception et de mise au point

D. SIMPLOT - Architecture des Ordinateurs

Au sommaire...

Roéle d’un systéme d’exploitation
Chaine de compilation
Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs

Role d’un Systéme d’Exploitation
(1/3)

Systéme d’Exploitation = Operating System
Présenter au programmes une abstraction du matériel
Piloter un périphérique = trés compliqué
« Pilote = Driver
7 = le systeme d’exploitation propose une HAL
+ Hardware Abstraction Layer
« Ex. fichiers, objets
Linterface entre le systéeme d’exploitation et les programmes
de I'utilisateur est constitué d’'un ensemble d’« instructions
étendues » fournies par le systéme d’exploitation
7 Appels systéme

D. SIMPLOT - Architecture des Ordinateurs

Role d’un Systeme d’Exploitation
(2/3)

Gestion des processus

-~ Multi-taches

* Préemptif, non préemptif

+ Ordonnanceur de processus

-+ Partage des ressources

-+ Communications inter-processus

Les entrées/sorties (Voir Partie V)

~ Interruptions, DMA

-+ « Bufferisation » des E/S

Gestion de la mémoire (Voir Partie 1V)

Systéme de fichiers

D. SIMPLOT - Architecture des Ordinateurs

Role d’un Systeme d’Exploitation
(3/3)

Chargement d’applications
7 Passer de I'état « fichier exécutable » a I'état «
programme qui s’exécute » ©
~ Le fichier contient une suite d’octets correspondant au
programme en langage machine ainsi qu'aux données
« En plus, on a des informations sur le programme
— L'adresse de début du programme
— La mémoire nécessaire
— Les bibliothéques dynamiques utilisées
C’est le role du systéme d’exploitation d’effectuer le
chargement
« Copie du « code » en mémoire + liens + exécution

D. SIMPLOT - Architecture des Ordinateurs

Au sommaire...

Réle d’'un systéme d’exploitation
Chaine de compilation
1 Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs 7

Chaine de Compilation (1/14)

Programme écrit en langage de « haut niveau »
-+ Fortran, Pascal, Ada, Cobol, C, C++...
Transformer le « programme source » en « fichier
exécutable », c’est le role de la compilation.
On distingue deux phases :
Compilation
Edition de liens

D. SIMPLOT - Architecture des Ordinateurs 8

Chaine de Compilation (2/14)

‘ Environnement de développement ‘

Fichiers
« objet »

,,,,, N
Environnement [
de mise au point

‘ Environnement d’exécution ‘

D. SIMPLOT - Architecture des Ordinateurs 9

Chaine de Compilation (3/14)

Niveaux de compatibilité
On distingue plusieurs niveaux de compatibilité

Programme
API source

(Application Programmatic]
Interface)

ABI II
(Application Binary Interface Bibliotheques
dynamiques
HAL

(Hardware Abstraction Layer)

Bibliotheques
statiques

Matériel
D. SIMPLOT - Architecture des Ordinateurs 10

Chaine de Compilation (4/14)

Niveaux de compatibilité (suite)

1 Compatibilité source
-+ Respect de I'API proposée
» Repose généralement sur des normes
* Ex. ANSI, POSIX, X-OPEN

-+ Le portage d’'un programme implique la recompilation des
sources

~ Pb. de propriété industrielle
« Open Source

D. SIMPLOT - Architecture des Ordinateurs "

Chaine de Compilation (5/14)

Niveaux de compatibilité (suite)

Compatibilité binaire niveau application
Programme sous forme de « binaires »
* Programmes compilés dans un environnement déterminé sous
forme chargeable
« Plate-forme proposant I'interface ABI utilisée
-+ Pb. pour les nouvelles architecture :
+ Cout de développement
+ = compatibilité binaire ascendante des plate-formes (matériel
et logiciel)
7~ Compatibilité binaire :
« Architecture du processeur
« Convention d’adressage et de communication (OS)
« Interface avec I'OS et les bibliothéques (.so ou DLL)
« Conventions de représentation des données (taille, LE ou BE)

D. SIMPLOT - Architecture des Ordinateurs 12

Chaine de Compilation (6/14)

Niveaux de compatibilité (suite)

Compeatibilité binaire niveau OS
~ Portabilité des != OS sur != plateformes
« On travaille sur l'interface OS/matériel
« HAL = Hardware Abstraction Layer

D. SIMPLOT - Architecture des Ordinateurs 13

Chaine de Compilation (7/14)
Exemple GNU

Chaine de compilation du projet GNU
% Le projet GNU a été lancé en 1984 afin de

développer un systéeme d'exploitation
complet, semblable a Unix et qui soit un
logiciel libre: le systtme GNU. (« GNU » est
I'acronyme récursif the « GNU's Not Unix »;
on le prononce « gnou » avec un G audible)
Des variantes du systeme d'exploitation
GNU, basées sur le noyau « Linux », sont
utilisées largement a présent; bien que ces
systémes soient communément appelés
par le terme « Linux », ils le seraient plus
exactement par « GNU/Linux ».

D. SIMPLOT - Architecture des Ordinateurs 14

Chaine de Compilation (8/14)
Exemple GNU (suite)

Fichier librairies
source pré-compilées
< i s o a
. . .
I I I
| | |
v v v ‘L
préy r édition de liens
cpp ccl as Id
]]]
v v v
fichier fichier fichier ‘
préprocessé assembleur objet
A s 0 Exécu-
teble
aout
D. SIMPLOT - Architecture des Ordinateurs 15

Chaine de Compilation (9/14)
Exemple GNU (suite)

Programme C trés trés simple :
#define MAX 2

int main(void)
{
inta = MAX;

a=a+2

return O;

D. SIMPLOT - Architecture des Ordinateurs 16

Chaine de Compilation (10/14)
Exemple GNU (suite)

Premiére étage : préprocesseur
3 "ex.c”
int main(void)

{
inta=2;

a=a+2;

return 0;

D. SIMPLOT - Architecture des Ordinateurs 17

Chaine de Compilation (11/14)

Exemple GNU (suite)
Deuxiéme étape : génération de I'assembleur
-file “ex.c"
-version *01.01"
gcc2_compiled. :
-text
.align 16
.globl main
-type main,@function
main:
pushl %ebp
movl %esp, %ebp

subl $4, %esp
movl $2, -4(%ebp)
leal -4(%ebp), %eax

D. SIMPLOT - Architecture des Ordinateurs 18

Chaine de Compilation (12/14)
Exemple GNU (suite)

addl $2, (%eax)
movl $0, %eax
movl %ebp, %esp
popl %ebp
ret
-Lfel:
.size main, .Lfel-main

.ident "GCC: (GNU) 2.96 20000731 (Linux-
Mandrake 8.0 2.96-0.48mdk)"

D. SIMPLOT - Architecture des Ordinateurs

Chaine de Compilation (13/14)
Exemple GNU (suite)

Troisiéme étape : génération du .o

000000: 7f 45 4c 46 01 01 0100 127 069 076 070 001 001 001 000 .ELF....
000008: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000 ..
000010: 01 00 03 00 01 00 00 00 001 000 003 000 001 000 000 000 ..
000018: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000 .
000020: e8 00 00 00 00 00 00 00 232 000 000 000 000 000 000 000
000028: 34 00 00 00 00 00 28 00 052 000 000 000 000 000 040 000
000030: 09 00 06 00 00 00 00 00 009 000 006 000 000 000 000 000 ..
000038: 00 00 00 00 00 00 00 00 000 000 000 000 000 000 000 000 ..
000040: 55 89 e5 83 ec 04 c7 45 085 137 229 131 236 004 199 069 U.a.
000048: fc 02 00 00 00 8d 45 fc 252 002 000 000 000 141 069 252 .

000050: 83 00 02 b8 00 00 00 00 131 000 002 184 000 000 000 000
000058: 89 ec 5d ¢3 08 00 00 00 137 236 093 195 008 000 000 000 .
000060: 00 00 00 00 01 00 00 00 000 000 000 000 001 000 000 000 ..
000068: 30 31 2e 30 31 00 00 00 048 049 046 048 049 000 000 000
000070: 00 47 43 43 3a 20 28 47 000 071 067 067 058 032 040 071 3
000078: 4e 55 29 20 32 2e 39 36 078 085 041 032 050 046 057 054 NU) 2.96

D. SIMPLOT - Architecture des Ordinateurs 20

Chaine de Compilation (14/14)
Exemple GNU (suite)

1 Génération de I'exécutable
Prendre les fichiers .o
-~ Déterminer le point d’entrée du programme
~ Faire les liens
« Edition de liens = Link

1 On peut mettre des informations permettant de
débogguer le programme

D. SIMPLOT - Architecture des Ordinateurs

21

File Edif View Progmm Commends Stahs Seurce Data
‘ rvi e S, O B
o|c-<...> B i e!_ 7. 2 g O
adofing MAX 2 W
it matnCvoid) Run

Moo WA

amaey

, oo 0 = P

EleglEEs s
g §‘ = f is
— o ———— s |

; lrr.u \»\lbﬂ
syl
D (004043 airiGr: mov] le? {lxllr‘l”ft‘MbJJ
D484 3d mam-l!\ Tea OufFPEEPFCOhabo) Neax
162 addl $0x2, (Neax)
OD40443 mov H0A0. Xeax
] vav %ebp.¥esp

Dreakpoint 1 at Ox@046426: file ex.c. 1ine 5.
{gdb) rum

Oreskpoint 1. main () sk ex.c:5
{db)

il =

A Breakpoint 1, main) at exc’5

Au sommaire...

1 Roéle d'un systeme d’exploitation
1 Chaine de compilation
= Machines virtuelles

D. SIMPLOT - Architecture des Ordinateurs

23

Machines Virtuelles (1/4)

Objectif =
~ S'affranchir de la compabilité binaire !
On ne compile plus pour une plate-forme physique donnee
mais pour une Machine Virtuelle -
Langage Java
-+ Développé par Sun Microsystem
> S'inspire du C++ pour la syntaxe
% S'inspire de Smalltalk pour la philosophie
Indépendance de la plate-forme matérielle
JVM = Java Virtual Machine

Write once, run everywhere

D. SIMPLOT - Architecture des Ordinateurs 24

Machines Virtuelles (2/4)

Chaine de compilation et plate-forme d’exécution

Cornpile Tirme Furirne
Soume Byterodde
o Locucker
¥ ¥
Jawa Ewecode
Connpiler Werifer
¥ W
das=s File e
P

D. SIMPLOT - Architecture des Ordinateurs 25

Machines Virtuelles (3/4)

Utilisation de code natif
JIT = Just-In-Time compiler

Uritusted Bytecode
bytecode y| werifier

Applet class
Ioader

Security
rmanager

Java Virual Machine

Native
rmaching Cperating
Java Trusted code platiorm
transiator

cormpiler bytecode

Local Java
Fource - code

D. SIMPLOT - Architecture des Ordinateurs

26

Machines Virtuelles (4/4)

Java n’est pas le seul langage avec machine

virtuelle :
- Smalltalk
-~ VisualBasic (génération de P-code)

-+ Langages interprétés en général

D. SIMPLOT - Architecture des Ordinateurs

27

Conclusion

Reste a voir les techniques de génération de code

D. SIMPLOT - Architecture des Ordinateurs

28

